139 research outputs found

    Degradation and forgone removals increase the carbon impact of intact forest loss by 626%

    Get PDF
    Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate

    The Political Economy of Deforestation in the Tropics

    Get PDF
    Tropical deforestation accounts for almost one-fifth of greenhouse gas emissions worldwide and threatens the world's most diverse ecosystems. The prevalence of illegal forest extraction in the tropics suggests that understanding the incentives of local bureaucrats and politicians who enforce forest policy may be critical to understanding tropical deforestation. We find support for this thesis using a novel satellite-based dataset that tracks annual changes in forest cover across eight years of institutional change in post-Soeharto Indonesia. Increases in the numbers of political jurisdictions are associated with increased deforestation and with lower prices in local wood markets, consistent with a model of Cournot competition between jurisdictions. Illegal logging increases dramatically in the years leading up to local elections, suggesting the presence of "political logging cycles". And, illegal logging and rents from unevenly distributed oil and gas revenues are short run substitutes, but this effect dissapears over time as political turnover occurs. The results illustrate how incentives faced by local government officials affect deforestation, and provide an example of how standard economic theories can explain illegal behavior.

    Remote sensing estimates of stand-replacement fires in Russia, 2002–2011

    Get PDF
    The presented study quantifies the proportion of stand-replacement fires in Russian forests through the integrated analysis of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data products. We employed 30 m Landsat Enhanced Thematic Mapper Plus derived tree canopy cover and decadal (2001–2012) forest cover loss (Hansen et al 2013 High-resolution global maps of 21st-century forest cover change Science 342 850–53) to identify forest extent and disturbance. These data were overlaid with 1 km MODIS active fire (earthdata.nasa.gov/data/near-real-time-data/firms) and 500 m regional burned area data (Loboda et al 2007 Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data Remote Sens. Environ. 109 429–42 and Loboda et al 2011 Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm Int. J. Wildl. Fire 20 487–96) to differentiate stand-replacement disturbances due to fire versus other causes. Total stand replacement forest fire area within the Russian Federation from 2002 to 2011 was estimated to be 17.6 million ha (Mha). The smallest stand-replacement fire loss occurred in 2004 (0.4 Mha) and the largest annual loss in 2003 (3.3 Mha). Of total burned area within forests, 33.6% resulted in stand-replacement. Light conifer stands comprised 65% of all non-stand-replacement and 79% of all stand-replacement fire in Russia. Stand-replacement area for the study period is estimated to be two times higher than the reported logging area. Results of this analysis can be used with historical fire regime estimations to develop effective fire management policy, increase accuracy of carbon calculations, and improve fire behavior and climate change modeling efforts

    Natural climate solutions

    Get PDF
    Our thanks for inputs by L. Almond, A. Baccini, A. Bowman, S. CookPatton, J. Evans, K. Holl, R. Lalasz, A. Nassikas, M. Spalding, M. Wolosin, and expert elicitation respondents. Our thanks for datasets developed by the Hansen lab and the NESCent grasslands working group (C. Lehmann, D. Griffith, T. M. Anderson, D. J. Beerling, W. Bond, E. Denton, E. Edwards, E. Forrestel, D. Fox, W. Hoffmann, R. Hyde, T. Kluyver, L. Mucina, B. Passey, S. Pau, J. Ratnam, N. Salamin, B. Santini, K. Simpson, M. Smith, B. Spriggs, C. Still, C. Strömberg, and C. P. Osborne). This study was made possible by funding from the Doris Duke Charitable Foundation. Woodbury was supported in part by USDA-NIFA Project 2011-67003-30205 Data deposition: A global spatial dataset of reforestation opportunities has been deposited on Zenodo (https://zenodo.org/record/883444). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710465114/-/DCSupplemental.Peer reviewedPublisher PD

    Forest Cover Change within the Russian European North after the Breakdown of Soviet Union (1990–2005)

    Get PDF
    Forest cover dynamics (defined as tree canopy cover change without regard to forest land use) within the Russian European North have been analyzed from 1990 to 2005 using a combination of results from two Landsat-based forest cover monitoring projects: 1990–2000 and 2000–2005. Results of the forest cover dynamics analysis highlighted several trends in forest cover change since the breakdown of the Soviet planned economy. While total logging area decreased from the 1990–2000 to the 2000–2005 interval, logging and other forms of anthropogenically-induced clearing increased within the Central and Western parts of the region. The most populated regions of European Russia featured the highest rates of net forest cover loss. Our results also revealed intensive gross forest cover loss due to forest felling close to the Russian-Finland border. The annual burned forest area almost doubled between the two time intervals. The 2000–2005 gross forest cover gain results suggest that tree encroachment on abandoned agriculture land is a wide-spread process over the region. The analysis demonstrates the value of regional-scale Landsat-based forest cover and change quantification. Our results supplemented official data by providing independently derived spatial information that could be used for assessing on-going trends and serve as a baseline for future forest cover monitoring

    Contrasting tree-cover loss and subsequent land cover in two neotropical forest regions: sample-based assessment of the Mexican YucatĂĄn and Argentine Chaco

    Get PDF
    The neotropical-forest’s northern and southern extremes, covering the Mexican YucatĂĄn and the Argentine Chaco, have among the highest rates of recent tree-cover loss in the biome. This study contrasts the character of loss in these regions, estimating proportions of types of loss and subsequent land cover. It is based on two-stage probability sampling design and field and satellite-image surveys. All estimates include uncertainties, which could be further reduced via model-assisted estimation or additional sampling. This approach can be replicated in other regions to estimate types of loss and associated land cover from a definitive, in-situ perspective. The character of loss in the two areas differed greatly. That in the YucatĂĄn was 54% temporary, mostly under fallow or selectively logged, while that in the Chaco was 85% permanent, split nearly equally between crops and pasture. These data contribute to a quantitative basis for studies of socio-economic drivers of neotropical deforestation.Fil: Krylov, Alexander. University of Maryland; Estados UnidosFil: Steininger, Marc K.. University of Maryland; Estados UnidosFil: Hansen, Matthew C.. University of Maryland; Estados UnidosFil: Potapov, Peter V.. University of Maryland; Estados UnidosFil: Stehman, Stephen V.. State University of New York; Estados UnidosFil: Gost, Allison. University of Maryland; Estados UnidosFil: Noel, Jacob. University of Maryland; Estados UnidosFil: Talero Ramirez, Yamile. University of Maryland; Estados UnidosFil: Tyukavina, Alexandra. University of Maryland; Estados UnidosFil: Di Bella, Carlos Marcelo. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Ellis, Edward A.. Universidad Veracruzana; MĂ©xicoFil: Ellis, Peter. The Nature Conservancy. Global Lands; Estados Unido

    Tree canopy extent and height change in Europe, 2001-2021, quantified using Landsat data archive

    Get PDF
    European forests are among the most extensively studied ecosystems in the world, yet there are still debates about their recent dynamics. We modeled the changes in tree canopy height across Europe from 2001 to 2021 using the multidecadal spectral data from the Landsat archive and calibration data from Airborne Laser Scanning (ALS) and spaceborne Global Ecosystem Dynamics Investigation (GEDI) lidars. Annual tree canopy height was modeled using regression tree ensembles and integrated with annual tree canopy removal maps to produce harmonized tree height map time series. From these time series, we derived annual tree canopy extent maps using a >= 5 m tree height threshold. The root-mean-square error (RMSE) for both ALS-calibrated and GEDI-calibrated tree canopy height maps was = 94% for the tree canopy extent maps and >= 80% for the annual tree canopy removal maps. Analyzing the map time series, we found that the European tree canopy extent area increased by nearly 1% overall during the past two decades, with the largest increase observed in Eastern Europe, Southern Europe, and the British Isles. However, after the year 2016, the tree canopy extent in Europe declined. Some regions reduced their tree canopy extent between 2001 and 2021, with the highest reduction observed in Fennoscandia (3.5% net decrease). The continental extent of tall tree canopy forests (>= 15 m height) decreased by 3% from 2001 to 2021. The recent decline in tree canopy extent agrees with the FAO statistics on timber harvesting intensification and with the increasing extent and severity of natural disturbances. The observed decreasing tree canopy height indicates a reduction in forest carbon storage capacity in Europe

    Importance of Indigenous Peoples' lands for the conservation of Intact Forest Landscapes

    Get PDF
    Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples’ lands, we examined the importance of these areas for conserving the world's remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples’ lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples’ lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples’ rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision‐making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples' lands, we examined the importance of these areas for conserving the world's remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples' lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples' lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples' rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision-making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.Peer reviewe

    Partitioned simulation of the interaction between an elastic structure and free surface flow

    Get PDF
    Currently, the interaction between free surface flow and an elastic structure is simulated with monolithic codes which calculate the deformation of the structure and the liquid–gas flow simultaneously. In this work, this interaction is calculated in a partitioned way with a separate flow solver and a separate structural solver using the interface quasi-Newton algorithm with approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The interaction between an elastic beam and a sloshing liquid in a rolling tank is calculated and the results agree well with experimental data. Subsequently, the impact of both a rigid cylinder and a flexible composite cylinder on a water surface is simulated to assess the effect of slamming on the components of certain wave-energy converters. The impact pressure on the bottom of the rigid cylinder is nearly twice as high as on the flexible cylinder, which emphasizes the need for fluid–structure interaction calculations in the design process of these wave-energy converters. For both the rolling tank simulations and the impact simulations, grid refinement is performed and the IQN-ILS algorithm requires the same number of iterations on each grid. The simulations on the coarse grid are also executed using Gauss-Seidel coupling iterations with Aitken relaxation which requires significantly more coupling iterations per time step

    Global Trends of Forest Loss Due to Fire From 2001 to 2019

    Get PDF
    Forest fires contribute to global greenhouse gas emissions and can negatively affect public health, economic activity, and provision of ecosystem services. In boreal forests, fires are a part of the ecosystem dynamics, while in the humid tropics, fires are largely human-induced and lead to forest degradation. Studies have shown changing fire dynamics across the globe due to both climate and land use change. However, global trends in fire-related forest loss remain uncertain due to the lack of a globally consistent methodology applied to high spatial resolution data. Here, we create the first global 30-m resolution satellite-based map of annual forest loss due to fire. When producing this map, we match the mapped area of forest loss due to fire to the reference area obtained using a sample-based unbiased estimator, thus enabling map-based area reporting and trend analysis. We find an increasing global trend in forest loss due to fire from 2001 to 2019, driven by near-uniform increases across the tropics, subtropical, and temperate Australia, and boreal Eurasia. The results quantify the increasing threat of fires to remaining forests globally and may improve modeling of future forest fire loss rates under various climate change and development scenarios
    • 

    corecore